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A method for analyzing a thin-walled tube acted upon by a bending moment
in the plane of its curved axis has been developed by Von Karman[1 ].

An essentially new feature in his method was the taking into account of
the flattening of the cross-section, Numerous contributions to the sub-
Ject have been published later by other authors; a critical review of
these latter contributions is given in [2 ]. The publications just re-
ferred to deal either with problem of raising the accuracy of the results
derived by Von Karman for possible application to a wider interval of
occurring parameters, or with some other special cases of loading. A
general characteristic of all of these publications is the use of minimum
principles appliceble to approximate expressions for displacements and
stresses. A different approach was chosen by Clark and Reissner [3 ];
they reduce the problem of the tube acted upon by a bending moment in the
plane of the curved axis to that of solving Meissner’'s equation.

The present paper offers a uniform approach to the problem of deform-
ation for a tube free of surface loading but carrying loads of general
form along its boundary line. The problem is treated as one of the theory
of thin shells. The boundary conditions of the tube ends are satisfied in
accordance with Saint-Venant’s principle., The notations used are funda-
mentally identical with those chosen in [4 ].

1. Consider the tube part bounded by the sections ¢ = 0 and ¢ = —~ N
(Fig. 1). We introduce into our discussion dislocational displacements
[51, i.e. displacements, non-periodical with respect to ¢, but in cor-
respondence with the periodical components of deformation. In our present
problem

Ue = (U° + Q°x r}i'%,i" (1.1)
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where r is the radius vector of an arbitrary point of the middle surface
of the tube, while the expression within the curved brackets represents
the displacement vector of the middle surface considered as a rigid body,
with the origin O of the coordinates used as a pole. The components of
the vectors

U° = Usler+ Uley + Ule,,  Q° = Q% + %, + Oy,

are constant dislocations. Projecting the vector U& on the directions
connected with the middle surface of the tube (Fig. 1), we obtain

ug ={cosfcos¢glU,° + cosbsinol/,° —sin 6 U ,°> —
— (o + sin 6) sin R Q,° |- (@ -+ sin 6) cos R Q%) ?—l:—q—’i’
0
w€ = {sin b cos oU,° -+ sinBsinglU ° -+ cos 0U,° 4 (1.2)
+ cos 0sin R Q.° — cos 0 cos pR,Q,°} ?—:‘;ﬁ
0

v€ = {— sinpUx° + cos pU/,° — g cos 0 cos R Q,° —
— & cos 8 sin R Q,° 4- (1 -+ a sin 6) ROQJ’}&%—&
1]

Substituting into (1.2), consecutively, ¢ = 0 and ¢ = — ¢,, we obtain

ug (0) = cos8U,° — sin 8U,° 4 (« -+ sin 6) R,Q,°, u& {(—gp,) =0

w? (0) = sin 8U,° 4 cos OU,° — cosOR,Q °, vE (—q,) =0 (4-9)
v8(0) = U0 —acos ORQ,° + (1 + asin ) RQ.°, wf(—qpy) =0
For the horizontal and vertical displacements
A, = ucosh - wsinb, A,=—usind~+ wcosh (1.4)
we consequently find
AE(0) = U,° + o cos ORQ,°, Af (—g,) =0 (1.5)

AF(0)=U,— (1 +asin) R,Q,°, Af(—g,)=0

Thus, we see that the introduced dislocational displacements deter-
mine the displacement of the cross-section ¢ = 0, considered as a rigid
body, with respect to the fixed cross-section ¢ = ~ ¢; This displace-
ment is characterized by the six parametersU?, U?, Uz°, Qr°, Q°, Q°.
If the displacement of the section ¢ = 0 is to be characterized by the
vector U°°{U °°, Uy°°, Ur°} of displacement of its center and the vector
Qeef Qx°°, Qy°°, Qz°°¥ of rotation angles, then, as easily concluded
from Fig, 1
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U.°=Uz
U= Up -+ RQ.°
U =U2 —RQS
Q=00 Q°=07°
FIG. 1. Q. =Q,° (1.6)

By means of well-known formulas we now determine the dislocational
components of deformation corresponding to the displacements (1.2)

(1.7)
1 . o ° °
= W {— sin ?Ux -+ cos (PU — acos 0 cos ?Ron —

— acos Bsin R\Q,° + (1 4 a sin 0) R Q.°}

£,8
1 o . o . o
OF = Foru(i T asin®) {cos 0 cos oU,° + cos 0sin ¢U,° — sin 8/ ,° —
— (& + sin ) sin R Q,° + (o + sin ) cos R, Q,°}

1 L .
g: o . ° _
"= pe T T asmop (oin 0singl/s® —sinbcos ol

— (2 + asin8) cos 6 cos R 2:° —
— (2 + asin8) cos 0 sin R Q,° + (1 + a sin 8) sin 0R Q%)

1
R2y(1-- asin 6)2
— (& -+ sin 8) sin 0 sin R2° + (2 -+ sin 8) sin 0 cos ¢ RHQ,°}

{sin 6 cos 0 cos U ,°+-sin 0 cos 0 sin pU ,°+ cos20U ,°—

8 =

Elg =x18 = O

If, with the aid of the relationships of Hooke's law in its general-
ized form, we derive from the expressions (1,7) the forces and moments,
and from the latter the corresponding surface loading, this loading will
be, in general, different from zero. Therefore, we assume expressions of
the form

u = uf 4 uk, v = v€ - vk, w = we 4 wk

for the total displacements. In doing so we note that the periodical
correcting displacements ut, vk, w* will have to be determined from the
condition that the total displacements satisfy the problem formulated
above.
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On the basis of the statico-geometric analogy [6 ] we construct the

solution of the system of equilibrium equations (replacing here the
membrane solution otherwise commonly used)

- 3 _ (1.8)
Ty = vRy3pp (1 + a sin 6)? {sin B sin oU/,° — sin 0 cos pU/,* —

— (2 -+ asin6) cos B.cos pRQ,° — (2 -+ asinB) cos 0 sin o R, O3,° +

+ (1 -+ asin 8) sin 0R,Q,%}

" Eh? . =y o . . Fr o
S vﬂo’%(i—l—asinO)“{” sin 0 cos 8 cos pU/° — sin 6 cos O sin U ,,° —

— c0s?00,° + (& -+ sin 6) sin 0 sin R, Q,° — (« - sin 6) sin 0 cos OR, Q%)
. ER3 o Y ~ .
M) = SR AT asn0) {sin U .° — cos@U,° + a cosBcos pR,Q,° 1+

-+ & cos B sin RQ,° — (1 + asin 8) RoQ.°)

. Eh? 77 © s J7 © : I7 o
2H = Ed T om0 {cosBcos oU,° + cosesme,, —sinflU,° — B
— (@ -+ sin 6) cos R Q,° — (a -} sin 8) sin R, Q,°}
To' =My =0, v=V12(1—p?
In these equations h_is the thickness of the shell. Appropriate choice of

the parameters U2, Uy°, f];°, (.2:, ﬁ;’, ﬁ; assures periodicity of the

correcting displacements uk, vk, wk, Finally, we define the functions X,
Y, Z as periodical solutions of the following equations:

(1.9)
@+ rreame [~ e sor T 2P T rame) X = O
%:)"%' 1 _';'.?23, ) %Zﬁ + [’“ a Ifaf Z?Z%)a +i2d? +S'L'n‘s(;n 9] b=—a (13—1;l 2 :i—nae)z

(2d2 = Rya% [ h)

It is easily seen that the functions X and Y are even and Z is odd
with respect to the substitution of # -~ 8 for 6. Integration of the third
equation between the limits 0 and 27 leads to the equation

2n
1 sin 02d0
Pz Sm a (1.10)

0
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valid within the limits of the theory of thin shells. We introduce the
notations

2r 2n 2n

1. 1 cos 0Y do 1 Zdo
Il=§r-gcoseXd6, 12=%Sm’ I3=ggm (1°11)
0 0 0
2n )
1 do
J = \—
k(@) =55 g(l—i—asiné)"

0

o (Rely)?+ (ImIy)? o (Bel,)?+ (Im I, o (Rely) +(Im Iy
Ay =2 1Rel1 v Ap=2 2ReI2 =, Ay=2a Rel, :

(1.12)

The relations (1.7) show that the components of the dislocational de-
formation represent very simple functions of the angle ¢. This predeter-
mines the form of the correcting displacements. In accordance with the
procedure to be used we subdivide the problem into three special problems.

2. The case corresponding to U ;. shall be called the first symmetrical
problem. From (1.7) we conclude that the non-vanishing deformation com-
ponents w &, r & are independent of ¢. This case corresponds to the sym-
metrical torsion of a shell of revolution. The solution is elementary
and we can confine ourselves to stating the final results.

For the torque and the shearing force we find

_Rp B 1 @R
My =RoP: = g5 iarars 7.0 1 U (2.1)

where J = m‘osh = equatorial moment of inertia of the cross-section of
the tube,

The shear stress is

s 1 1 5 — M, ) 9.9
%12 = % {7, (@) I« sin 0 % 21 (2.2)
where o, 1s the maximum stress according to the elementary theory of
torsion,

0 ]

. . sin 040 aJy () d9 ve
vk =a(l + asinb) {H Fasintp ~ Ta(o) S T asn 9)8] 7 T ROCI} (2.3)

H 8 Po

3. The case corresponding to 2, shall be called the second symmetric-
al case. Inasmuch as, in accordance with (1.7), €,8 and «,8 are inde-
pendent of ¢, we use for the solution of the problem Meissner’s equation
in transformed form
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d29VE acos® doVk [,_. a?cos? @ g2 S0 Jovk _
402 T Tt asind 46 T Fasmop ° 1+asin9] =

_ :pgy 8in@ {'g_ LY qe
=24 e 1Y T 8}

where

o
z

—a¢os slg]: cot § 3.0
Fo

e 1 d (1 -+ asin6)s,?
" asin ® d0

o

ER2Q

Ve

Z cot @

. { [ d( 4 asin6) M .
¥ —“asine[ ae ——ot,(‘,oSGMg]

Comparing the obtained equation with the first equation of the system
(1.9), we find

Bk %”; Q2 —i02°) X (3.2)

The forces and moments express themselves in terms of the function X by
means of the following relations:

7 __@{Zﬁ;( a cos & ImX 1+ asin )_2Qz° acos Re X
17 5 U \ T+ asin® 2{1 4 asing) 9, 1--asind

Ty = 'f";f% 22: mix —2 Sj-:jﬂe% (3.3)

2 acos0X

S:: [m (v T -+ 7 % 5m0) + s P )

The vertical displacement is

]
BF=ry(Co— Scose Re 9"*dt ) (3.4)
),

It is easily seen that the condition of periodicity of A zh assumes, 1n
accordance with (3.2) and (1.11), the fomm

0o =—mhgo (3.5)

z W‘MHQII
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Eliminating ©.° from the relations (3.3), we easily find with the aid
of the aforementioned properties of the function X that the forces and
moments, applied at an arbitrary cross-section (essentially T,), are

statically equivalent to the bending moment

EJ [ A
M= {ﬁ} RQ,° (3.6)
Introducing the membrane and bending stresses
T - T, 6M 6M
. G'i. = _;Ll s G;L: —hi R c} e _}.&2_1 . czb — -h—:~ (3.7)
we find
ﬁ:mwil__{__acosﬂﬁeX Imll(acos()ImX + asin® (3.8)
sy My 1+ asin® Rel;\ 1-4asinb 2(1+asin0))} )
o 1 dX Imly, dX _ M,
A= R —mer Im ) ("°—J/,o
b . .
oy 6 aX acos 0 pasin®
o T VAL {Im (E‘e‘ +e 7 asin9X> t s fasme
Iml, dX pa cos0 1
Re 1, ¢ o T + asin6 )J

b .

5 6 aXx « cos asind
o ‘”W{Im@‘ F&)—+i+asin9X)+ 3 Fasng
Im 1, dX acos@

~ Rel; e(“ﬁ"‘i-yasinex)

where a'0=Mz/ (J/ry) represents the maximum stress according to the element-

ary theory of bending, and finally

o [}

. 2Q °

A,":ro{cz+{_lmg cos 8Xdf + o7t R"S"OseXde} % } 3.9)
8, *

00
. 2k dX  Iml;, dX\) 2R’
ko Y 1 z
AP - (1 + & sin 6) { 1 vR. (Re 46 + Re [1 m do )} L)

4. The cases characterized by Uy", on # 0 and U:, 0° £ 0.shall be
called the first and the second inverse symmetrical probfems.

With some generalization of the results derived in [ 7], we find that
the basic difficulty encountered in the case under consideration consists

in the solution of the equation

2., V& vk 2 cos? i
dd)i;z acos‘B dx" +[_ 4a cos 02+i2d2 smf) ] VE—
{4+ asin® 46 (1 + asinb) {4 asin6 J /-

g2 sin® g .oV .>
= i2d {4+ asin® <}‘ +1Eh2 X
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where
{4 asin deg bt 58 1
YE = e a6 —.cot Beil F Y &)f,gl (41)
. 14 asin0 €M, ,* . 1 .
l = — a 20 +cot 6M2,1 i—sinng,l

The subscript 1 after a comma signifies here and in the following
that the quantity concerned represents a multiplier of cos ¢ or sin ¢ in
the corresponding expression. Furthemmore, if there are two functions

(signs), the upper one refers to the first inverse-symmetrical case, and
the lower to the second one.

Substituting into (4.1) the corresponding expressions, we find, with
the aid of (1.9),

— ‘L—]‘O UO - ﬁ QD
ve | _ 4 : J [i =4 ] "
g [ Ry®, ﬁ°+ Rgo —U.° Y+ % Q) ) Q, Z (42)

The forces and moments express themselves in terms of the fundamental
complex function by the relations

o

U
__ER? 4 [acos0ImY a sin 6 L 43
T“—_v-r:{ Rocpo[ T+ asing + 2(1+asm9)”]—U ' (4.3)
4 acos@ReY vy 43 [acosOImZ acos 0 Qx_iacosOReZQx
Rypy 1+ asin® —U, ° 1+ asin® 2(1+asin9)2}§° o1+ asinb Q;

7
Eh2[ 4 dY acosfY ¥
Tz'l—voﬁ]_m,lm@—e__*_ 1+asin6>_ﬁx°+
v, Q.
4 dY acos0Y Uj 4 < a cos 6Z ) x
+1T%RB<E+ 1+asin6)_ﬁ°+qa Im (25 + T asme
4 Re ( acosGZ)Qx
T e d0+1+asm6 Qu
g _Em 4 amy Uy 4 4 _aRey vy +_ almZ Qx
17 rg | Rygo1 - asin® v, R0q>°1+asm0 v.* o1 + a sin 0 Q

°

4 aReZ Q
%0 Fasin®) _o°
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170

ER® 4 dY 2 cos 8Y v
Ml,i—'?;}‘;ﬁo@ { Re( (1'{“ } { T asin® "‘"‘?xﬁm
. . u, °
dY o cos 8Y nasin®
“{Im(35+(i +u) 1+as§ne>"“ 50 + asin §) ] ot

B_
@ cos 87 o2 @ cos 8Z
+Re(d9+(1+ )1+asxnﬁ)}gg°+[lm +(+ )1+usm9>
e pacosf ]R"Q;
Tl +asmn® | RO,
“i‘f&
. ER® 4 a cos BY p
&{2'1::;%;&%{ Re(p {1 +p )i+asxa 8) M"{?x“m
s v.”
dY acos8Y asin® ¥
M{Im(p.;@ + 1+ }‘L)i+asiaa>+ 2{1 4 asin®) ]mlf; +
RO °
& cosuZ 035
+ Re(“'dﬁ + (1 + ) (1+asm0)>1:1§ ¢
dZ ¢ cos8Z acos Ry Q;
+ {Im(f‘%’{“(i+f‘}1+asme, T Zd Fasme) } }
ER [ U ’
Hy= G- (1~ )R%Wf+asm6 tReym ,,+1my
Re . ° RQ.°
—ReZ _ _"—ImZ }
—ReQ, - 99?

Finally, the displacements can be written in the fomm
]
k . cos@RexV¥ ., ., Cs (4.4)
A, =ry(1 +msm6}{—~§ mcﬁ3+ 1 04}
' (4.5)

% : cos @ Rey V¥ ¢ {sin © + a) Rey V¥ 0 BCs 185
Be.s 3’“{a’305§3 i+ asing dﬁ*g 1+ asing df —acos f}‘+ C‘}

L

The conditions of periodicity of A ;1 and A p,1 are, according to
(4.2) and (L 11)

(4.6)

‘ﬁyo Im Ig Uyc ﬁxﬁ Im 7 L] st
= e T "R | o1 = o ™ """ He °
7] 2y, a, *Q,
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and by virtue of these expressions we have
o

H U
Im /, g cos@ ReY 4a y

0
cos8ImY
1+ asin® @0 — Ux"

X .
A, = (1 +asinb) {(§ L e

0
Im]sg cos0 Re Z >4a Ro“:: tr Ca}

0

9
(S cos0Im Z
- 1 ] - I 0 - 0
2 + o sin® Re Iy 9°1+<:csm() Po R, C, 4.7
{ (sin0 4+ a)ImY : Im Y
E_ sin o) Im a cos§ Im
8o _‘[(§ 1+asing de-——cosﬁg 1T ¥asing \m
o 9,
o 8 v’
_Iml»z(g(smG-}-a)Reraﬂ_ceseS‘acosGBeY ) da v
Re I, {4+ asin 14 asin® }% __Ux“
8 '
_ (sin@ + o) Im Z acos@ImZ Im Iy
[(& 1+ asin o d9—~cosﬂg T4 asin® )wﬁels )
6, 6o
(S(sin9+a)ReZ 6 — cos egacos@ReZ 8]_4530‘2; Cs
1+ asing 1 +asin® ) % R0 rocose ~{—r00 +
8 8, Y
v, R °
. 4 0°%x
v ":m{mi acosf O}MA
1T e, —U, -t RQ, et

Using, furthermore, the aforementioned properties of the functions ¥
and Z, the relation (1.10) and the notations (1.13), we find, with the

aid of (4.3)
EJ (28] Uv S0 %0 EJ (28g) — o sine
RoPo = s e} 1 Mo= 75l no
o Pol U, cos ¢y Po) RQ, cosg
R —-E{%‘z} U, cosg , M _E_J{géi}lfogx cos ¢ (4.8)
¥ R? |d%) st sing, PR \diq ROQUO sing ’
: —U," cos o
EJ {2A ]
M, =3 e} P, =0 4.9
TR d%qo U: sing , : (2:9)
The maximum stresses in the extreme filaments of the tube are, accord-
ing to the elementary theory of bending
0y, — Mot _ __ GERAS Uy o My amna O 410)
“ T V’oBo?o“Uxo, Ty T Ve Quo (4.
Introducing the stresses
sw=T1 = m 7.;} , B = 5
6M 6M 6H
@@= a5 = "1272 , 12® == -
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we find for them, on the basis of (4.3), the following expressions:

(4.11)
1 [acos@ReY Im Iy, facosgImY a sin § >] COS'P}
1) — -
oL Goz{ A2[ 14 asing +Re12< 1-}asing + 2(1+asin6)? /] sing +
1 facosbReZ Im]s(acoselmZ - acos 0 )]COS?}
+°°P{ Ta[1+asin9 t R\ TFasing — ZTAFasinr)|sine

1 dY acos 0Y Im 7, dY acos 8Y cos @
(1) — - il ol halububthdnl
+ o2 Uoz{ A, [Re <d0 + 1 + a sin (-)) + Re I, Im <d0 + 1+ asinﬁ)]cos qa} +

1 dZ acos 0Z Im 7g /dZ acos 0Z cos @
+ %0e T As Re<35+1+asin9>+f{e131m zﬁ+1+asin6>Jsin }
@

1 Im 7 ; a sin ¢
1) — —_ 2
91277 = %oz {:F A, (ReY—{— Re I, Imy)1+asin6 coscp} +

a sin @

1 Im13
+c°p{:F_K;<ReZ+Re13 ImZ>1+asin6 cosq:}

v s dY \ a cos Y pa sin 6
o, = dq {m[lm (E@JV“ W) T asin e)+ 201 Lasin0?

Im 7, Re C%/ + (1 4+ “') f_ﬁ?:ﬁ; e)} cos‘?}

" Rel, sin @
6 dZ acos 0Z pa cos 6
T GOP{E[I“‘ (@ + 4w 1+asin6>_ 2(1 Fasin0p
Im g dZ a cos 6Z cOS ¢
— fer-Re (39 + (1 + W) 7 asins) ] sin ,p}

6 - dY a cos 0Y asinf
0y(® = coz{m[lm@ o T (14w 1+ asin@) + 2 (1 4 asin 0)?

Im /7, dY a cos 0Y cos @
_RelzRe<”@+(1+P')1+asin9>]sincp}
, 6 dZ acos 8Z
Tcop{m[lm (”Zie"*“ (1 +w) {1+ asin®
acos0 Im I dZ acos 6Z cos @
T 2(1fasin9?  Re 133e <”@'+(1+“) —{—asin())] sinq:}
. 6 (1— ) Im /7, a sin ¢
0@ = o, { F L (Imy — 122 Rey) e *" i |
6(1—p) Im 7 a sin @
+°°"{:F vAs (ImZ_ReIsReZ>1+asin6coscp}

5. A series of examples of tubes in bending by a bending moment in the
plane of the curved axis of the tube has been studied with the aid of the
relations given above. The results obtained were in good agreement with
those derived by other authors and with the results, thus far available,
of experimental tests. As an example of non-symmetrical bending the case
has been investigated of a half ring ¢, = 7 under torsion (by means of a
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moment),

Continued fractions in commection with the method of expansion in
tems of the "small* parameter a were used for the solution of Equation
(1.9). Figure 2 shows by solid line the axial (small squares) and trans-
verse (small circles) stresses calculated from Formulas (4.11); these
stresses are located at the outer surface of the tube characterized by
the parameters d2 = 21.4 and a = 1/3; the broken line reproduces the re-
sults obtained in [8 1. Solving (2.1), (3.6), (4.8) and (4.9) for the

parameters of the dislocation, we find

o 'R 2 © o R 2 o o -1?02 [+] h e}
Ux == E_oj {B.Ropx }, U‘U = E;-QJ‘{BRQPI‘ }, ROQ == E——]{’{Ropv + '}'xwz },
2 o & R 2 L o R{)z =} (e}
Ur =" 6RP.), RO = 55 M), Ry = g5 My — 1RoPs%)

where 2 - 2 @ (5.1)
=T 1A PRI CROL D vaves

The last relations permit the expression, by means of the formulas
derived above, of the displacements of the edge of the tube with the

0 90° 180° Z10° 360°

FI16. 2. FIG. 3.

aid of the quantities P , M2, M? which chacracterize
the loading applied at the eége. It; is not ﬁx fhcult to see that the
correcting and the dislocational displacements are quantities of the same
order of magnitude.

Figure 3 shows, as an example, the warping displacement v* = U, /¢;0,
corresponding to the first symmetrical case for a = 1/3. Fxgure 4 gives
a comparison of the quantity

vhich offers a measure of rigidity against bending for the second sym-
metrical case (case of Von Karman), with values obtained by various
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authors by means of experimental tests (see [2]). Notwithstanding the
fact that the quantity A, was determined on the basis of the simplifying
assumption a = 0, the agreement of the theoretical work with the experi-
mental tests is entirely satisfactory.

30
K
[»]
£ ]
20
+
a +
. a
2
10}—k=§ R . N
A S
! q

0 5 10 520 25 30
FIG. 4.

As to the other coefficients of rigidity, their magnitude depends
essentially on the kind of boundary conditions at the ends of the tube.
To establish a solution which satisfies the boundary conditions it will
be necessary to use, in addition, a new procedure involving, in partic-
ular, solutions which take care of the edge effects. In such cases the
discussion presented above can be used as a basis for the derivation of
the exact solution.
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