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A method for analyzing & thin-walled tube acted upon by & bending moment 
in the plane of its curved axis has been developed by Von Karman [l 1. 
An essentially new feature in his method w&s the t&king into account of 
the flattening of the cross-section, Numerous contributions to the sub- 
ject have been published later by other authors; & critical revier of 
these latter contributions is given in [ 2 1. The publications just re- 
ferred to deal either with problem of raising the accuracy of the results 
derived by Von Karman for possible application to a wider interval of 
occurring parameters, or with some other special cases of loading. A 
general characteristic of all of these publications is the use of minimum 
principles applicable to approximste expressions for displacements and 
stresses. A different approach was chosen by Clark and Beissner f3 1; 
they reduce the problem of the tube acted upon by 8 bending moment in the 
plane of the curved axis to that of solving Meissner’s equation. 

The present paper offers a uniform approach to the problem of deform- 
ation for a tube free of surface loading but carrying loads of general 
form along its boundary line. The problem is treated as one of the theory 
of thin shells. The boundary conditions of the tube ends are satisfied in 
accordance with Saint-Venant’s principle. The notations used are funda- 
mentally identical with those chosen in f 4 1. 

1. Consider the tube part bounded by the sections r$ = 0 and C#J = - qb@ 

(Fig. 1). We introduce into our discussion dislocational displacements 

f51, i.e. displacements, non-periodical with respect to $I, but in cor- 

respondence with the petiodical components of defoxmation. In our present 
problem 

(1.1) 
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where r is the radius vector of an arbitrary point of the middle surface 
of the tube, while the expression within the curved brackets represents 
the displacement vector of the middle surface considered as a rigid body, 
with the origin 0 of the coordinates used as a pole. Ihe components of 
the vectors 

U” = U,“e, + U,“e, + Uzoezt ii’ = &“e, + SAVoey + i&‘e, 

are constant dislocations. Projecting the vector U g on the directions 
connected with the middle surface of the tube (Fig. 11, we obtain 

226 = (Cos 8 cos $I!,’ + cos 8 sin plU?p - sin 9 U,” - 

- (a + sin 0) sin ‘pR,O,” i- (CC f sin 8) cos c#?,~~~} ?+ 

tog = {sin 6 cos VU,” + sin 0 sin rgU o + cos 0U,” + (1.2) 

-j- cos 0 sin cpR,Qxo - cos 8 cos ~R,SZ,*} TG 

vg = { - sin c&J,” $ cos $7,’ - a cos 6 cos pR,C2Z,o - 

- a cos 0 sin (pR&2,” + (1 + a sin 0) R0&2,0j~ 

Substituting into (1.21, consecutively, # = 0 and C$ = - #a, we obtain 

ug (0) = cos euxo - sin fW,” + (a i_ sin 8) R&i&,“, .G (---‘PO) = 0 

zL;g (0) = sin eu,o + cos eu,” - cos eR,Q 0, ug (-19”) = 0 
(1.3) 

218 (0) = U, - a cos 8R,&ixo + (1 + CC sin 0) R,i&“, us ( --Y)J = 0 

For the horizontal and vertical displacements 

Ap = ucosB+wsin0, A,=-~s~~~+wcos~J (I.41 

we consequently find 

A; (0) = U,” _t- cc cos BR,S2;Z,o, 4” (-P’CJ = 0 
Azg(0)= U,” - (1 + CC sin 8) R,C2,o, &+(p,,)=O 

(f.5) 

‘Ihus, we see that the introduced dislocational displacements deter- 
mine the displacement of the cross-section q5 = 0, considered as a rigid 
body, with respect to the fixed cross-section qb = - &, This displace- 
ment is characterized by the six parameters V,“, Uyo, Uzo , sZxo, City”, Cl,“. 
If the displacement of the section + = 0 is to be characterized by the 
vector U”“RJ,“” t U Oat iJzoo) of displacement of its center and the vector 
W”l fl,“” , f-q”, Ci:Ot of rotation angles, then, as easily concluded 
from Fig. 1 
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FIG. 1. 

FJy means of well-known 
components of deformation 

1 

c2t,“” = i-2,“, Q1p” = i&o 

8,” = Q2, (M 

formulas we now determine the dislocational 
corresponding to the displacements (1.2) 

(W 
E‘# = Rocpo~, ; o sin e) { - sin cpU,” + cos p?IJ o - a cos 0 cos ‘pR,CiZ,” - 

- a cos 9 sin ‘pR,,C&,” + (1+ a sin 0) R&“} 

WR = - 
1 

Roeo( 1 + asin 0) {cos 0 cos ‘pU,” + cos 9 sin $Jvo - sin 911,” - 

- (a + sin 0) sin c~R,S~~~ + (a + sin 0) cos pR,&,“} 

1 
x2g= H,$ (I+ a sin O)* 

(sin 0 sin ‘pU,” - sin 0 cos ‘pU,” - 

- (2 + a sin 9) cos 8 cos ‘pR,SZ,” - 

- (2 + a sin 9) COP 0 sin ‘pR&,” + (1 + a sin 0) sin OR,,Qzo} 

1 

” =R02cyO( I+ a sin Cl)* {sin 8 cos 0 cos cpU,“+sin 0 cos 0 sin ‘pU,“+ cos2MJzo- 

- (a + sin 0) sin 8 sin pR,SZ,” + (a + sin 6) sin 0 cos ~R,,Quo) 

If, with the aid of the relationships of Hooke’s law in its general- 
ized form, we derive from the expressions (1.7) the forces and moments, 
and from the latter the corresponding surface loading, this loading will 
be, in general, different from zero. Therefore, we assume expressions of 
the form 

u = zig + uk, v = vg + vk, w=wg+wk 

for the total displacements. I; doing so we note that the periodical 
correcting displacements uk, v , wk will have to be determined from the 
condition that the total displacements satisfy the problem formulated 
above. 
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On the basis of the statico-geometric analogy C 6 1 we construct the 

solution of the system of equilibrium equations (replacing here the 

membrane solution otherwise comnonly used) 

T/z- Eh= 
vR,*To (1 + a sin Qs 

{sin 6 sin $7,’ - sin 0 cos f&TV0 - 
(f.8) 

- (2 + a sin 8) cos 8. cos qd?,i&” - (2 + a sin 0) co9 8 sin ‘p R. ago + 

+ (1 + a sin 0) sin WS0C&o) 

s’= Eh* 
vft,~, (1 + (I sin Q)S {- sin 0 cos 0 cos cjDx” - sin 0 cos 0 sin ‘pE,’ - 

- cos* Gzo + (a + sin 6) sin 9 sin r$?&” - (a -j- sin 0) sin 8 cas pE(,‘;szyo} 
EP 

M1’ = v&a% (1 + a sin t+} 
(sin $7xo - co8 yVwo + a cos Q cos c~R,&~ + 

-f- a cos 0 sin cp&j&” - (1 + cc sin 0) RO[izz”} 

T; = M; = 0, v = r/12 (1- ~2) 

In these equati%ns h-is t& thicknes_s of the shell. Appropriate choice of 

the parameters USo, U;“, UP, bl,” , Qyo , gzo assures periodicity of the 

correcting displacements uk, v ’ wk. Finally , , we define the functions X, 

Y, 2 as periodical solutions of the following equations: 

(1.9) 
c0se 

1 +asine 

dSY 
m+ 

Cc cos.8 dfl. + [ - (i~~~~& + i2da 1 ,“i,“z, *] Y =- da 
COS e 

I+ a s1n e de (I + a sin 0) 

g+ “‘Ose 
4ar cost 0 

dZi[-(Z+asinB)P3.“dB1+‘~s~nB ‘=-ddall+asinB)Z 
I 

sinQ+ a 
I+ a sin 0 de 

It is easily seen that the functions X and Y are even and Z is odd 

with respect to the substitution of n - 9 for 8. Integration of the third 

equation be&ween the limits 0 and 2 R leads to the equation 

(1.10) 
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valid within the limits of the theory of 

notations 

thin shells. We introduce the 
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2x 2n 2x 

s 
cos excie, 

s 
cos OYd0 

l+asinO’ 13 = & 11 +zt;in, (1.11) 
0 0 0 

2n 

1 
J/c(a) =a?; 

s 

de 

o (I+ a sin 6)” 

hI = 2 (Re Zl)‘-k (Im Zl)’ , h2 = 2 (Re Zda + Urn Zda , 
Re II He Z2 

n 
s 

= 2a (Re Z$ + (Im I,)2 
ReZ, 

(1.12) 

'Ihe relations (1.7) show that the components of the dislocational de- 

fonation represent very simple functions of the angle 4. This predeter- 

mines the foxm of the correcting displacements. In accordance with the 

procedure to be used we. subdivide the problem into three special problems. 

2. The case corresponding to U" 

problem. From (1.7) we conclude that 

shall be called the first symmetrical 

the non-vanishing deformation com- 

ponents og,rg are independent of 4. 'lhis case corresponds to the sym- 

metrical torsion of a shell of revolution. 'Ihe solution is elementary 

and we can confine ourselves to stating the final results. 

For the torque and the shearing force we find 

M=Rpz~f ’ 
P 0 = Roa \(I + P) TO 

u 0 

’ 

where J = nr,,3h = equatorial moment of inertia of the cross-section 

the tube. 

The shear stress is 

1 1 
‘la = a, 1 1 ( 

% 
J2 (a) (I+ a sin Cl)% %= 2Jl ! 

(2-l) 

of 

(2.2) 

where uO is the maximum stress according to the elementary theory of 

torsion. 

vk=a(l+asinO) 

e 
aJa (a) 

s 
de 

Jg (a) (I+ a $in 9)S s. 1 ; + R,C, (2.3) 
I 

3. 'Ihe case corresponding to azo shall be called the second symnetric- 
al case. Inasmuch as, in accordance with (l.?), ~~8 and K2g are inde- 

pendent of+, we use for the solution of the problem Meissner's equation 

in transformed form 
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d%+Vk a cog.0 &Vk 
-+ I- d02 l+asinO de 

+ [ - t1 ~c~~~e,2 + i2d2 1 ;rsfn @] 8”” = 

where 

= i2d2 sin 0 ’ 
1 -+ a sin 0 ( 

Wt_iE&B’ 
1 

&L.-L 
I 

d (1 + a sin 6) 8ag 1 Q” 
asin 0 d0 - 

clCOS8E@ = Zeot 8 
410 

(3.1) 

the obtained equation with the first equation of the system 
find 

aVk =:(a,“-iinp)X (3.2) 

(3.3) 

‘I’he forces and moments express themselves in terms of the function X by 
means of the following relations: 

T, :: ES (‘??$ ( 
0 

ae$ 
tx Em 

t ( 
pd$+ aeoseX )+ 

usin 
1 +asm@ 2(1 + CrsinO) 

The vertical displacement is 
e 

cos%Reavkd~) (3.4) 
80 

It is easily seen that the condition of periodicity of A zk assumes, in 

accordance with (3.2) and (1.111, the form 

;ir;o c= - EL!& f35f 
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Eliminating C$” from the relations (3.3), we easily find with the aid 
of the aforementioned properties of the function X that the forces and 
manents, applied at. an arbitrary cross-section (essentially Tz), are 
statically equivalent to the bending moment 

Introducing the membrane and bending stresses 

acos0ReX Im 11 
( 
a cos 8 Im X 

+ 
a sin 8 -- 

1+asin0 Re II 1+ ix sin 0 11 2(1+asin0) (3.8) 

where ao =M,/(J/r ) 0 represents the maximum stress according to the element-’ 
ary theory of bending, and finally 

6. The cases characterized by U *, Q O f 0 and U O, fi o # O.shslf be 
called the first and the second in~ersexsynrnetricalyprob ems. I 

With some generalization of the results derived in 17 1 , we find that 
the basic difficulty encountered in the case under consideration consists 
in the solution of the equation 

daxVk + 

c-82 
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where 
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xg = 
1 + a sin 0 s 

a d6 

x* zzz - 1 + a sin 8 d”,,, 
a d0 

The subscript 1 after a coma signifies here and in the 
that the quantity concerned represents a multiplier of cos 

(4.1) 

following 

4 or sin q5 in 
the corresponding expression. Furthermore, if there are two functions 

(signs), the upper one refers to the first inverse-synnnetrical case, and 

the lower to the second one. 

Substituting into (4.1) 

the aid of (1.9), 
the corresponding expressions, we find, with 

The forces and moments express themselves in terms of the fundamental 

complex function by the relations 

T 
2,1 

_ %!_ I_ 4 1m dY 
- 

yr 
01 

&cpO 
gi+ 

a co9 8Y Duo 

1 + a Sin 0 > _ Q‘,’ + 
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Ro 3,’ 
-ReZ_R B o -Jin.2 

* II 

Finally, the displacements can be written in the form 
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6, k= P, 1 1+asinO - 
“1’:,” ;; ; do) sl 

/ 
00 00 

e e 
Im ia (sin 9 Jr a) Re Y -~ 
Re Ia 1 + a sin 8 

cd - cos B 
s 

e, 
~~‘~~*~~~ de)]: _:;a - 

0 
% Lx 

8 e 
- 

KS 
(si;e,+a;$$z d0 - cos 0 

s 

Im Is ;cyz;i?; dO) - - . 
Re Is 

0, 0, 
8 

‘““; B,th‘?,Ree ’ d0 - cm 6 1 ;I’: ,” s;! ez do)] k 
R&y” 

o- ro cos f-j G c.5 

e, 8.2 i 
9. R&/ f34 -+ r. cs + 

fv"- 
1 %" 

,1-- 
v"o 

-Ku o-+-acosfJ 

%Qt,o 

x %Q," 
}--Ap,, 

Using, furthermore, the aforementioned properties of the functions Y 

and 2, the relation (1.10) and the notations (1,13), we find, with the 

aid of (4.3) 

&,, 
z P, = 0 69) 

‘Ike Cairns stresses in the extreme filaments of the tube are, accord- 

ing to the elementary theory of bending 

M 2. 1 
Go2 = 3 / To 

bEhA %” 

= -Y’oRocp, ___u 
_ MPL 4Ehhs ‘x0 

o* %P- JTb=- 

“o’fo i2z,o 

(4.10) 
X 

Introducing the stresses 
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we find for them, on the basis of (4.31, the following expressions: 

(4.11) 

+ 
a sin 0 

2 (I+ a sin f3)z + 

a cos 0 
- 2 (1 + a sin ey + 

q2(2) = cToz 
{ 

F6(l-t4 ImY_ImIz sin ‘p 
~ 

6 ( 
-ReY),+ a 
Re I, a sin 0 cos ‘p 1 

+ 

+o,,{~6~(ImZ-_ReZ)1+~sine~~~] 

5. A series of examples of tubes in bending by a bending moment in the 

plane of the curved axis of the tube has been studied with the aid of the 

relations given above. ‘lhe results obtained were in good agreement with 

those derived by other authors and with the results, thus far available, 

of experimental tests. As an example of non-symmetrical bending the case 
has been investigated of a half ring +a = n under torsion (by means of a 
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moment). 

Continued fractions in connection with the method of expansion in 

terms of the “small* parameter a were used for the solution of Equation 

(1.9). Figure 2 shows by solid line the axial (small squares) and trans- 

verse (small circles) stresses calculated from Formulas (4.11); these 

stresses are located at the outer surface of the tube characterized by 

the parameters cP = 21.4 and a = l/3; the broken line reproduces the re- 

sults obtained in f8 3, Solving (2.11, 13.61, (4.8) and (4.9) for the 

parameters of the dislocation, we find 

The last relations permit the expression, by means of the formulas 

derived above, of the displacements of the edge of the tube with the 

FIG. 2. FIG. 3, 

aid of the quantities PXO, P O, P,” , M,“, M O, MS0 which chacracterize 

the loading applied at the e 5 ge. It is not kfficult to see that the 

correcting and the disloeational displacements are quantities of the ssme 

order of magnitude. 

Figure 3 shows, as an example, the warping displacement II* = Illo/$o, 
corresponding to the first symmetrical case for a = l/3. Figure 4 gives 

a comparison of the quantity 

r fl _ = --- 
TO Al 

Ai& offers a measure of rigidity against bending for the second sp- 

metrical case (case of Von Karman), with values obtained by various 
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authors by means of experimental tests (see f 2 I), Notwithstanding the 
fact that the quantity A, was determined on the basis of the simplifying 
assmnption a = 0, the agreement of the theoretical work with the experi- 
mental tests is entirely satisfactory. 

30 

20 

10 

1 

0 5 to 15 20 25 30 

FIG. 4. 

As to the other coefficients of rigidity, their magnitude depends 
essentially on the kind of boundary conditions at the ends of the tube. 
To establish a solution which satisfies the boundary conditions it will 
be necessary to use, in addition, a new procedure involving, in partic- 
ular, solutions which take care of the edge effects. In such cases the 
discussion presented above can be used as a basis for the derivation of 
the exact solution. 
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